If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+32t-16=0
a = 16; b = 32; c = -16;
Δ = b2-4ac
Δ = 322-4·16·(-16)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32\sqrt{2}}{2*16}=\frac{-32-32\sqrt{2}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32\sqrt{2}}{2*16}=\frac{-32+32\sqrt{2}}{32} $
| 7.5(2.2+2.4x)=-120.3 | | 4x+4.2+2x=9.7+x | | x+28=x+18 | | 6x+25=4-x | | 101.59=3.58(-4.5x-3.7)-7.6 | | -7(5a+8)-a=124 | | -49=-7x+7 | | 2=m6+3 | | 7(x+5)-3(2x+5)=0, | | -8-2(5+6p)=-102 | | -7k-2=-58 | | 27+(-11)=x | | m+3/2-m/4=1/3 | | –4g+10=–10−2g | | 10+6q=–10+4q | | 3x-4/5=x-3/2 | | 101=-4(5+4v) | | x+2=x*x-4 | | 8x-17+4x+11=180 | | x+(5x+3)=36 | | x+2=x²-4 | | –10−3t=2t+5+5 | | x+(5x+3=36 | | 3x-4/5=x-5/2 | | -x/5=-51 | | 3x+4x=226x+3x=24 | | –2r=9−3r | | 7x+20=4x+41 | | X+4/3=2x+7/4 | | 8–5v+3v–=6 | | 4(v-5)=4v-20 | | 9x2-6x-63=0 |